4 research outputs found

    Curvilinear Structure Enhancement in Biomedical Images

    Get PDF
    Curvilinear structures can appear in many different areas and at a variety of scales. They can be axons and dendrites in the brain, blood vessels in the fundus, streets, rivers or fractures in buildings, and others. So, it is essential to study curvilinear structures in many fields such as neuroscience, biology, and cartography regarding image processing. Image processing is an important field for the help to aid in biomedical imaging especially the diagnosing the disease. Image enhancement is the early step of image analysis. In this thesis, I focus on the research, development, implementation, and validation of 2D and 3D curvilinear structure enhancement methods, recently established. The proposed methods are based on phase congruency, mathematical morphology, and tensor representation concepts. First, I have introduced a 3D contrast independent phase congruency-based enhancement approach. The obtained results demonstrate the proposed approach is robust against the contrast variations in 3D biomedical images. Second, I have proposed a new mathematical morphology-based approach called the bowler-hat transform. In this approach, I have combined the mathematical morphology with a local tensor representation of curvilinear structures in images. The bowler-hat transform is shown to give better results than comparison methods on challenging data such as retinal/fundus images. The bowler-hat transform is shown to give better results than comparison methods on challenging data such as retinal/fundus images. Especially the proposed method is quite successful while enhancing of curvilinear structures at junctions. Finally, I have extended the bowler-hat approach to the 3D version to prove the applicability, reliability, and ability of it in 3D

    The multiscale bowler-hat transform for blood vessel enhancement in retinal images

    Get PDF
    Enhancement, followed by segmentation, quantification and modelling of blood vessels in retinal images plays an essential role in computer-aided retinopathy diagnosis. In this paper, we introduce the bowler-hat transform method a new approach based on mathematical morphology for vessel enhancement. The proposed method combines different structuring elements to detect innate features of vessel-like structures. We evaluate the proposed method qualitatively and quantitatively and compare it with the state-of-the-art methods using both synthetic and real datasets. Our results establish that the proposed method achieves high-quality vessel-like structure enhancement in both synthetic examples and clinically relevant retinal images. The bowler-hat transform is shown to be able to detect fine vessels while still remaining robust at junctions

    Curvilinear structure enhancement by multiscale top-hat tensor in 2D/3D images

    Get PDF
    A wide range of biomedical applications require enhancement, detection, quantification and modelling of curvilinear structures in 2D and 3D images. Curvilinear structure enhancement is a crucial step for further analysis, but many of the enhancement approaches still suffer from contrast variations and noise. This can be addressed using a multiscale approach that produces a better quality enhancement for low contrast and noisy images compared with a single-scale approach in a wide range of biomedical images. Here, we propose the Multiscale Top-Hat Tensor (MTHT) approach, which combines multiscale morphological filtering with a local tensor representation of curvilinear structures in 2D and 3D images. The proposed approach is validated on synthetic and real data, and is also compared to the state-of-the-art approaches. Our results show that the proposed approach achieves high-quality curvilinear structure enhancement in synthetic examples and in a wide range of 2D and 3D images

    The multiscale top-hat tensor enables specific enhancement of curvilinear structures in 2D and 3D images

    Get PDF
    Quantification and modelling of curvilinear structures in 2D and 3D images is a common challenge in a wide range of biomedical applications. Image enhancement is a crucial pre-processing step for curvilinear structure quantification. Many of the existing state-of-the-art enhancement approaches still suffer from contrast variations and noise. In this paper, we propose to address such problems via the use of a multiscale image processing approach, called Multiscale Top-Hat Tensor (MTHT). MTHT produces a better quality enhancement of curvilinear structures in low contrast and noisy images compared with other approaches in a range of 2D and 3D biomedical images. The proposed approach combines multiscale morphological filtering with a local tensor representation of curvilinear structure. The MTHT approach is validated on 2D and 3D synthetic and real images, and is also compared to the state-of-the-art curvilinear structure enhancement approaches. The obtained results demonstrate that the proposed approach provides high-quality curvilinear structure enhancement, allowing high accuracy segmentation and quantification in a wide range of 2D and 3D image datasets
    corecore